Construction of Variable-Stepsize Multistep Formulas

نویسندگان

  • Robert D. Skeel
  • ROBERT D. SKEEL
چکیده

A systematic way of extending a general fixed-stepsize multistep formula to a minimum storage variable-stepsize formula has been discovered that encompasses fixed-coefficient (interpolatory), variable-coefficient (variable step), and fixed leading coefficient as special cases. In particular, it is shown that the " interpolatory" stepsize changing technique of Nordsieck leads to a truly variable-stepsize multistep formula (which has implications for local error estimation and formula changing), and it is shown that the " variable-step" stepsize changing technique applicable to the Adams and backward-differentiation formulas has a reasonable generalization to the general multistep formula. In fact, it is shown how to construct a variable-order family of variable-coefficient formulas. Finally, it is observed that the first Dahlquist barrier does not apply to adaptable multistep methods if storage rather than stepnumber is the key consideration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A hybrid method with optimal stability properties for the numerical solution of stiff differential systems

In this paper, we consider the construction of a new class of numerical methods based on the backward differentiation formulas (BDFs) that be equipped by including two off--step points. We represent these methods from general linear methods (GLMs) point of view which provides an easy process to improve their stability properties and implementation in a variable stepsize mode. These superioritie...

متن کامل

Analysis of variable-stepsize linear multistep methods with special emphasis on symmetric ones

In this paper we deal with several issues concerning variablestepsize linear multistep methods. First, we prove their stability when their fixed-stepsize counterparts are stable and under mild conditions on the stepsizes and the variable coefficients. Then we prove asymptotic expansions on the considered tolerance for the global error committed. Using them, we study the growth of error with tim...

متن کامل

A technique to construct symmetric variable-stepsize linear multistep methods for second-order systems

Some previous works show that symmetric fixedand variablestepsize linear multistep methods for second-order systems which do not have any parasitic root in their first characteristic polynomial give rise to a slow error growth with time when integrating reversible systems. In this paper, we give a technique to construct variable-stepsize symmetric methods from their fixed-stepsize counterparts,...

متن کامل

Stability of linear multistep methods and applications to nonlinear parabolic problems

In the present paper, stability and convergence properties of linear multistep methods are investigated. The attention is focused on parabolic problems and variable stepsizes. Under weak assumptions on the method and the stepsize sequence an asymptotic stability result is shown. Further, stability bounds for linear nonautonomous parabolic problems with Hölder continuous operator are given. With...

متن کامل

Equilibrium States for Multistep Methods Department of Mathematics Equilibrium States for Multistep Methods

When the stepsize in non-stii ODE codes is restricted by stability, an uneven pattern of stepsizes with many step rejections is frequently observed. Results analysing this behaviour have been obtained for Runge-Kutta methods, leading to several papers attempting to improve stepsize control. It is shown here that a similar analysis can be carried out for mul-tistep methods. The explicit Adams 2-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010